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The solution of the approximate equations of motion strongly extended thermics is 
obtained. A general relation is obtained between the integral momentum and buoyancy~ 

Aircraft engines release a large quantity of heated combustion products into the atmos- 
phere. It is evident that their flow has very characteristic features of a jet in the 
boundary-layer approximation, on the one hand [i]. On the other, buoyancy forces begin to 
influence the dynamics and structure of the exhaust gas after a sufficiently long period of 
time. Therefore, the exhaust-gas wake behind an airplane in vertical take-off may be 
regarded as a jet-type thermic after a sufficient period of time [2, 3]. The principal 
feature of the wake is the high longitudinal homogeneity of its parameters in the initial 
period of its evolution. 

A series of general results on the dynamics of thermics was obtained in [4-6] - regard- 
ing, in particular, the possibility of existence of self-similar conditions and the asymp- 
totic laws of motion at large times. In [7-10], analytical expressions describing the non- 
steady motion of two-dimensional thermics in some limiting cases were obtained. A series of 
results for nonextended thermics were obtained usiDg equations for the mean parameters over 
the thermic volume [6, 11-14]. In view of the considerable analytical difficulties, methods 
of numerical investigation of thermics have also been developed [15-18]. 

In the present work, a general relation is obtained between the integral (over the 
volume) vertical momentum and the buoyancy of the thermic. Attention focuses mainly on 
turbulent thermics, which are almost homogeneous in the vertical direction at the instant of 
their formation. The approximation of one-dimensional gas dynamics is used here, employing 
mean quantities across the jet. 

Considering subsonic flow without chemical reactions, and assuming isobaric conditions 
across the jet, the hydrodynamic equations are written in the following form, disregarding 
the molecular viscosity and heat conduction 

2s + 8Pv____.Lh = o, ( 1 )  
Ot axh 

OpA• q apv~Ax~ ~- pv~ a• - 0 ,  ( 2 )  

Ot Oxh 3xh 

Opv~ Opvivh 
0---7-- q- Oxa - -  g~A9 = O, ( 3 )  

Oc~T~ OpcpAT q- OPcvv~AT q- PVh - -  pvkg~ : O. (4) 
Ot &1~ Oxh 

Suppose that the deviations in temprature AT, molecular weight a~, and density AO in- 
side the thermic from the corresponding parameters at the same height in the surrounding 
medium are sufficiently small, and the specific heat Cp is constant. If the dimensions of 
the thermic are sufficiently small, so that the Weisel-Brent frequency may be regarded as 
constant within the height range occupied by the thermic [6], the following result is 
obtained under the given assumptions, integrating Eqs. (2)-(4) over the volume between 
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infinite limits and taking into acount that the velocity and excess density at infinity 
aer zero 

a ~ = _ N2y ' 
Ot (5) 

a y =  H, (6) 
0t 

where J is the integral (over the volume) vertical ccmponent of the momentum 

= i p udV, (7) 

is the integral (over the volume) buoyancy 

n = p  dv, (8) 

Ap ( A T  AV~ (9)  
= - -  g P--~- = g T~ ~oo , ' 

is the molecular weight of the gas mixture; N is the Weisel-Brent frequency [6] 

(__e + 1 OT~ 1 0 ~ )  (iO) 

I t  f o l l o w s  f rom Eqs.  (5 )  and (6)  t h a t  t h e  i n t e g r a l  momentum and buoyancy  p e r f o r m  non-  
damping oscillations with frequency N such that the quantity n 2 + N2j 2 is conserved over 
time, with stable stratification of the atmosphere (N 2 > 0). The damping of the mean (over 
the thermic volume) velocity and excess density is determined by the rate of increase in its 
volume. 

Below, a turbulent axisymmetric vertical jet is considered, assuming satisfaction of all 
the conditions adopted in deriving Eqs. (5) and (6), except for the assumption of finite 
vertical dimensions. After averaging Eqs. (1)-(4) with respect to the turbulent pulsations, 
the resulting equations are averaged over the finite jet cross section, assuming that the 
dynamic, thermal, and concentrational widths of the jet are the same. As an example, the 
result of double averaging of Eq. (4) is given 

Op~ < A---T > S Op~ < k T . u  > S . OT ~ g ~ (ii) 

ot + az + p ~ < u > S ( - - ~ z  + ] = 0 ,  Cp 

where 

< Z (z, t)> = S -~ (z, t) 
R(z,t) 

J' 2~tr ( C (z, r, t) > dr. (12)  
0 

Assuming approximately that the mean of the product is equal to the product of the 
means, and omitting the averaging symbols and the subscript ~ for the sake of simplicity, 
the following system of equations is obtained using the averaged Eqs. (1)-(4) 

dpS ~ OpJ 

0--7-- -~--z + Q = ~  
(13) 

0d 1 0 Jr - - p u J  - I I  = O, 
Ot p Oz 

(14) 

aH 1 a + pull + N~J -=- O, 
at p az 

(i5) 
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where Q is the rate of entrainment of mass from the surrounding gas in the jet 

Q= 2=R(z, t)o [vT(z,~ R, t ) -  o R(z, 0 ];  (16) 

vr(Z, R, t) is the radial velocity component at the jet boundary; also 

J = uS,  (17)  

H = QS. (18)  

The system in Eqs. (13)-(15) may be closed using the assumption - with a sound basis in 
the theory of turbulent jets - that the growth rate of the jet radius is determined by the 
pulsational velocity, which, in turn, is proportional to the mean jet velocity over the 
cross section [i] 

aR aR 4-u . . . .  c1.i, (19) 
at az 

where c is an empirical constant, of the order of 0.i. 

It is evident that Eq. (19) is inapplicable in the region of the upper and lower boun- 
daries of the thermic~ Therefore, the results obtained may be valid only for sections of 
the thermic sufficiently far from its boundaries. 

The system in Eqs. (13)-(15) and (19) may evidently be regarded as a variant of the 
integral methods of turbulent-jet theory [i]. 

First consider the case of neutral atmospheric stratification (N = 0). For thermics 
with vertical dimensions much less than the height of the homogeneous atmosphere, the den- 
sity and external temperature may be assumed constant, which allows Eqs. (14) and (15) to be 
written in the following form in this case 

OJ Ou] s H, (20) 
at az 

OH OuH 
--q---= O. (21) 
Ot Oz 

If, at the moment of its formation, the thermic is practically homogeneous in the vertical 
direction, this homogeneity is retained for some time t,. At times less than t,, the spatial 
derivatives in Eqs. (20) and (21) may be neglected, and an accurate solution is obtained. 
At times much greater than the time to obtain establish buoyancy conditions t n % [J0/H0]: 

where 

R = Ro(1-i-z-ztz) 1/3, (22) 

= QoR~R_~ (23) 

u=~t, (24) 

(25) 

(22)-(24) may bevalid with a 

~2 = 2R0 (3c~0) - i .  

In the  s p a t i a l l y  inhomogeneous case ,  the  s o l u t i o n  in Eqs. 
sufficiently weak dependence of ~0(z) and R0(z) on z. In this case, the flow characteristics 
will depend on z as a parameter. The time t... may be obtained using Eqs. (22)-(24) to esti- 
mate the terms in Eqs. (19)-(21) with spatial derivatives 

[ cAz 13/2 (26) 

where hz is the characteristic scale of variation in the parameters of the initial distribu- 
tion along the jet axis. It is readily evident that t, is the time of displacement of a 
liquid particle by an amount ~hz. 
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Fig. i. Evolution of the distribution of the velocity 
i, excess temperature 2, and radius 3 of the thermic 
along the vertical coordinate. Results of numerical 
solutionof Eqs. (19)-(21) when T = 300 K, g = 104 
m. sec-2: a) initial distribution; b) t = 8 sec; c) 
32 sec. H, R, m; u, m'sec -z. 

At times t >> t,, when the flow becomes significantly inhomogeneous the determining 
parameter of the problem is the integral (over the volume) buoyancy ~, which is conserved 
over time according to Eq. (5). The self-similar solution of Eqs. (19)-(21) is sought in 
the form in [5], defined by the relations 

z _ R___R__ _ 2 u t  _ 2E~P =i~l/41o_l/4 IU2 .  

r (~) v (~) (o (~) 

( 2 7 )  

For the new unknowns r, v, w, the following system of equations is obtained from Eqs. 
(19)-(21) on taking account of Eq. (27) 

a v~rZ = 2~rZ ' or= - vr= + 

0 0 
~or2 + ~ cor 2 - -  ~ cor~v = O, 

Or 8r 

the solution of which takes the form 

(28) 

(29) 

( 3 0 )  

r : c~, (31) 

{~ when ~ ~ ~max, D=c0~--- 
when ~ > ~max" 

(32) 

The value ~max = 2(2~c2)-z/4 is found from the condition of conservation of the total 
buoyancy H. 

An analogous problem regarding the dynamics of a thermic when N = 0 in a more general 
formulation, taking acount of the radial parameter distribution, was solved in the jet 
approximation in [8, 9]. 

The axial velocity and temperature of the thermic obtained in [8, 9] increases practi- 
cally linearly with height, which agrees with Eq. (32). However, according to [8, 9], the 
thermic radius does not depend on the height, in contrast to Eq. (31); this is associated 
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with the assumption that the viscosity is independent of the longitudinal coordinate [8, 9] 
and may correspond to a situation in which the turbulence of the thermic is determined by 
the turbulence of the atmosphere. In the present work, Eq. (19) actually assumes that the 
turbulence of the thermic is generated by its motion relative to the surrounding air, and 
the turbulent viscosity is proportional to the product of the radius and its velocity. 

The results of numerical solution of Eqs. (19)-(21), reflecting the process by which 
the system approaches self-similar flow conditions in Eqs. (31) and (32), are shown in 
Fig. i. 

Proceeding to the investigation of stable stratification of the atmosphere (N 2 > 0), 
consider the case of a thermic that is practically homogeneous over the height. 
terms with spatial derivatives in Eqs. (14), (15), and (19), it is found that 

J (t) = USo sin [N (t - -  to) -{- ~1, 

II (t) = N~So cos [N (t - -  to) + ~ l ,  

Discarding 

(33) 

(34) 

R(t) = R0 {1 @ T] -1 .f [s in(N/ '@ qo)]dt'} ~/a ' (35) 
0 

tg ~ = NJoIIT i, ( 3 6 )  : / C  

T F ' 

I:1 = Ro (3cu)-L (38) 

The time of onset of evolution t o may be related to the velocity of motion of the heated-gas 
s o u r c e  Vp 

z 

to = j Vp  ~ (z ')dz' .  ( 3 9 )  
Zo 

The corrections 6J, 6E, 6R to the solution in Eqs. 
g e n e i t y  may be  c a l c u l a t e d  f rom p e r t u r b a t i o n  t h e o r y  

8J = -- ,1 N-~ F.2 -F Ot ] sin [IN (t - t ' ) l  dr', 
to 

' ( OFz 
6 I I = . f N - 1  N2F1 + Ot' ] s i n [ N ( t - - t ' ) ] d F '  

t ,  

6R = R -~ (t) - - u  --}- cR-a6J R2dt ', 
~o Oz 

where 

(33)-(35) produced by the inhomo- 

(40) 

(41) 

(42) 

F1 = 9 -t--~-O 9u]; (43) 
0z 

a 
F~ = p-1 ~ z  pull. (44) 

Estimating the integrals in Eqs. (40)-(42) for times much greater than the period N -I, the 
following expression is obtained for the amplitude ratio 

16J__!l < . 1 6 n l  . " 7~N - I  + R ( t )  , (45) 
IJI ~ lIII Az 3cz (N) 

where Az is the resulting scale of variation in the parameters along the jet due to inhomo- 
geneity of the atmosphere, the height dependence of the source characteristics, and the time 
of onset of evolution 

Az -1 = Z -I (p) @ Z -1 (N) @ Z -z (U) "t- Z-I (~) + NVp I "+- (YpT1) -I, ( 4 6 )  
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z(f) is the characteristic scale of variation in f; and 
2 

15R[R ~ HN-~ T [z -~ (Ro) + z -~ (it) + z -~ (N)] + Nt l J-------(- (47) 

From the requirement that the ratio in Eq. (45) be small in comparison with unity, it follows 
that the conditions of applicability of Eqs. (33)-(35) are that the displacement of the 
liquid particle in the oscillation period be small in comparison with the scale of inhomo- 
geneity Az, and that the jet radius be small in comparison with cz(N). It may be deduced 
from the last condition that the validity of Eqs. (33)-(35) is restricted to times less than 

t ,  = ~1 [3cz (N) RT1] 3. (48) 

When R0 = 100 m, u = 100 msec  - 1 ,  c = 0 . 1 ,  and  z(N)  = 104 m, Eqs .  (38)  and (48)  g i v e  t ,  o f  
t h e  o r d e r  o f  105 s e c .  A p a r t  f r o m  t h o s e  o b t a i n e d  f r o m  Eq. ( 4 5 ) ,  no f u r t h e r  c o n s t r a i n t s  
f o l l o w  f r o m  Eq. ( 4 7 ) .  

The s i n g u l a r  r o l e  o f  t h e  s c a l e  z (N)  in  e s t i m a t i n g  t h e  r a t i o  i n  Eq. (45)  a r i s e s  in  t h a t ,  
o v e r  t i m e ,  t h e  o s c i l l a t i o n s  o f  a d j a c e n t  l i q u i d  p a r t i c l e s  w i t h  d i f f e r e n t  f r e q u e n c i e s  a r e  t r a n s -  
f o rmed  f r o m  c o p h a s e  t o  c o u n t e r p h a s e ,  wh ich  l e a d s  t o  t h e  a p p e a r a n c e  o f  s p a t i a l  g r a d i e n t s  t h a t  
grow i n d e f i n i t e l y  ( w i t h i n  t h e  f r a m e w o r k  o f  p e r t u r b a t i o n  t h e o r y )  o v e r  t i m e .  Tne i n h o m o g e n e i t y  
o f  t h e  o t h e r  p a r a m e t e r s  makes  a l i m i t e d  c o n t r i b u t i o n  t o  t h e  v a l u e  o f  t h e  s p a t i a l  d e r i v a t i v e s .  

NOTATION 

t, time; xi, i-th coordinate; vi, i-th projection of the velocity; z, u, vertical coordi- 
nate and velocity; v r, radial component of velocity; V, volume; t,, time of existence of 
quasi-homogeneous conditions, defined in Eqs. (26) and (48); �9 and ~1, characteristic times, 
defined in Eqs. (25 ) and (38); u, quantity defined in Eq. (37); Az, resulting scale of para- 
meter variation along the thermic axis; z(f), characteristic scale of variation in f; p, 
density; T, temperature; Km, gravimetric concentration of m-th impurity; ~, molecular weight; 
Ap = p - p~; AT = T - T~; A< m = ~m - ~m~; A~ = ~ - B=; Cp, specific heat at constant pressure; 

g, acceleration due to gravity; N, buoyancy frequency, defined in Eq. (i0); R and S = ~R 2, 
radius and cross-sectional area of thermic; J and ~, integral (over the thermic volume) 
Vertical momentum and buoyancy, defined in Eqs. (7) and (8); ~, specific buoyancy, defined 
in Eqo (9); J = uS; ~ = ~S; 6R, 6J, 6H, corrections to R, J, H due to deviations from homo- 
geneity; $, r, v, ~, dimensionless analogs of z, R, u, ~; Q, rate of entrainment of the mass 
of surrounding air into the jet; c, constant of turbulent mixing; Vp, velocity of propaga- 
tion of heated-gas source; Fz, F2, functions defined in Eqs. (43) and (44); t o , initial 
time; <...>, mean Qyer the turbulent pulsations; a bar above a symbol denotes the mean over 
the thermic cross section. Indices: 0, value at time to; ~, parameters of atmosphere at 
the same height as the given point of thermic. 
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CALCULATION OF THE FLOW OF A POLYDISPERSED SYSTEM 

OF PARTICLES 

A. K. Azhibekov UDC 532.529 

We discuss a model which can be used to compute the velocities and temperatures 
of solid and liquid particles in the presence of collisions and coagulation. 

Calculation of the flow of a polydispersed system of solid and liquid particles has been 
considered by numerous researchers in recent years ([1-4] and others). This is because of 
the great abundance of multiphase systems in nature (aerosol processes in the atmosphere) 
and in technology (flow of a gas with suspended particles in a nozzle, carburetion processes 
in combustion chambers, etc.). 

We consider the steady one-dimensional flow of a polydispersed system of solid and 
liquid particles in a gas. As an example, we consider the motion of a three~ phase system 
consisting of a gas, solid dust particles, and water droplets, whexethe latter two phases 
are suspended in the gas. The system flows in a channel of variable cross section (a 
venturi serving as a dust trap). The fundamental problem is to determine the parameters of 
the three-phase mixture and to calculate the degree of precipitation of solid particles into 
the liquid droplets, the pressure drop, and the temperature decrease of the carrier medium. 
Obviously in order to be able to solve this problem, we must know the size distribution func- 
tions of the solid particles dN I = f(61)d61, m -3 and the liquid droplets dN 2 = f(6=)d(62), 
m -3 under a variety of conditions. The most significant factor for these distributions is 
the collision and coagulation of particles of different fractions. There are three types 
of collisions for the problem considered here: a) solid particle-solid particle collisions; 
b) liquid droplet-liquid droplet collisions; c) solid particle-liquid droplet collisions. 

From the estimates of [4] we assume that collisions between solid particles do not lead 
to their coagulation; these collisions are then termed ineffective. On the other hand, the 
other two types of collisions are effective, and each collision leads to complete coagulation 
of the particles. We note that collisions of the last two types are the basic process of 
dust capture and therefore the degree of purification of the exhaust gas depends on the fre- 
quency and effectiveness of these collisions. Strictly speaking (as shown in [i]) a not un- 
common case is when the collision leads to fragmentation of the particles, as well as par- 
tial coagulation. Processes of this type are not considered at all in the present paper. 

A collision leads to an excess (or deficit) of momentum and energy of the newly formed 
(as a result of coagulation) particle. Therefore the velocity and temperature of the newly 
formed particle can differ significantly from the velocity and temperature of particles of 
the same size but not subjected to perturbing factors. In addition, it is very important 
in the solution of problems of this kind to take into account the fact that solid particles, 
which earlier had precipitated into liquid droplets, can return to the flow after the drop- 
lets have completely evaporated. 
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